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Image-Driven Mesh Optimization 
Category: research 

Abstract 
We describe a method of improving the appearance of a low vertex 
count mesh in a manner that is guided by rendered images of the orig- 
inal, detailed mesh. This approach is motivated by the fact that greedy 
simplification methods often yield meshes that are poorer than what 
can be represented with a given number of vertices. Our approach 
relies on edge swaps and vertex teleports to alter the mesh connectiv- 
ity, and uses the downhill simplex method to simultaneously improve 
vertex positions and surface attributes. Note that this is not a simpli- 
fication method-the vertex count remains the same throughout the 
optimization. At all stages of the optimization the changes are guided 
by a metric that measures the differences between rendered versions of 
the original model and the low vertex count mesh. This method creates 
meshes that are geometrically faithful to the original model. Moreover, 
the method takes into account more subtle aspects of a model such as 
surface shading or whether cracks are visible between two interpene- 
trating parts of the model. 

1 INTRODUCTION 
Due to the multitude of large geometric models that are available, a 
major challenge is to create simple models that have the appearance of 
the originals. One of the most commonly used method to produce such 
simple models is to perform a sequence of local operations that reduce 
the complexity of the model. Nearly all such methods use a greedy 
approach to selecting these operations-the operation that is performed 
next is the one that will change the model the least according to some 
quality measure. Such greedy approaches often result in simplified 
meshes that can be substantially improved by further changes to the 
connectivity, the vertex positions and the texture coordinates of the 
model. This paper describes a method for improving the appearance 
of a mesh that uses rendered images of the original mesh to help guide 
the changes. 

Why is the greedy approach to simplification not optimal? A typical 
greedy simplification algorithm uses an operation (edge collapse, for 
instance) to reduce the vertex and polygon count of the model. Usu- 
ally a priority queue is used to order the potential edges to collapse 
according to the estimated change in geometric fidelity that each edge 
collapse would make. At each step, the edge collapse with the low- 
est cost is performed, then affected neighboring edges are re-evaluated 
and re-inserted into the priority queue. Such algorithms essentially 
create a path through the space of all possible meshes, where each new 
node in the path is a mesh that has one fewer vertex than the preced- 
ing node. Previous decisions in the selection of earlier meshes in this 
path severely restrict the later meshes that can be reached. Consider the 
analogous problem in 2D of simplifying a single (possibly many-sided) 
polygon by performing edge collapses. If the original polygon is a de- 
tailed approximation of a circle, then the best (in the mean error sense) 
five-sided simplification is a regular pentagon. A single edge collapse 
(the greedy step) cannot produce the best four-sided model, which is 
a square. This same problem occurs frequently in 3D simplification. 
For example, by extruding the circle and pentagon to cylinders, we are 
faced with a similar problem in 3D where no combination of two edge 
collapses yields an optimal model. Not only do such greedy algorithms 
produce suboptimal geometry, but the mesh connectivity can often be 
improved as well. 

Our solution to this problem, mesh optimization, is to improve the 
appearance of a simplified mesh by performing mesh operations that do 
not alter the vertex count. These changes are guided by comparisons 

between rendered images of the simplified mesh and the original, high- 
detail mesh. Because we use comparisons between rendered images, 
the color, texture, and normals of the mesh are automatically taken into 
account in the optimization process. We describe our method in detail 
after a review of previous work. 

2 PREVIOUS WORK 
Because our mesh optimization work is designed to improve upon 
meshes that have been simplified, the mesh simplification literature is 
the most closely related area to our work. This literature is too large to 
cover in any detail, so in this section we will only review some of the 
broad trends, paying particular attention to the order that each method 
uses to decide which mesh operation is to be performed next. 

In 1992, Schroeder and Lorensen described a simplification method 
that repeatedly performs vertex removal in order to simplify a 
mesh [17]. This is one of the earliest algorithms to repeatedly use a 
single mesh operation (vertex removal in this case) to reduce the com- 
plexity of a mesh. Their method makes a number of successive passes 
through the list of mesh vertices, each time relaxing the tolerance on 
which vertices may be removed. 

The original paper on mesh optimization is that of Hoppe and his co- 
authors [6]. Their goal was to improve the aggregate distance between 
a given mesh and a set of 3D points P, and this process was designed to 
improve the meshes from their earlier work on surface reconstruction 
from unorganized points [5]. They also used this technique for simpli- 
fying a mesh by creating the points P by densely sampling points on 
an original mesh. Their approach is to perform edge operations (edge 
swap, edge split, edge collapse) in a manner that is guided by a term 
that measures the distance from the current mesh to the points P. Their 
energy term is a weighted sum of the number of vertices, the distances 
from the mesh to P, and an edge length term (the spring term). Their 
optimization method selects an edge at random, performs one of the 
three edge operations at random, and then uses conjugate gradient to 
change the vertex positions in the neighborhood of the edge in order 
to improve the fit to P. A random change is accepted if it reduces the 
energy term. 

Several researchers use a priority queue to determine the order of 
local operations for simplifying a mesh. These priorities are based on 
such measures as distance to points [7]. distance to planes [15], njni- 
mizing a quadric function [3], and minimizing change in volume [9]. 
Perhaps most closely related to the optimization work in this paper is 
using an image-driven priority queue to simplify a model [lo]. All 
of these are greedy approaches, and therefore are all prone to creating 
suboptimal meshes. 

View-dependent simplification divides the simplification task into 
two components [8, 12, 191. During the pre-processing stage, a se- 
quence of simplification operations (e.g. edge collapse) are performed, 
and a tree of interdependencies of these operations is also built. During 
on-line rendering, information about the viewpoint is used to decide 
which of the simplification operations should be performed. and this 
determines the mesh to be displayed. Although we use rendered im- 
ages from different viewpoints to perform optimization, the work pre- 
sented in this paper is not a view-dependent simplification approach in 
the sense that this term is used in the literature. In our approach, we 
use rendered images during off-line optimization. 

There have been several approaches towards incorporating color and 
texture information into the simplification process. Hoppe uses addi- 
tional terms in his energy measure to capture information about mesh 



color [7]. Cohen et al. place restrictions on the deviation that texture 
coordinates may undergo in order to prevent sliding of the texture [2]. 
Garland and Heckbert extended their quadric functions to incorporate 
color and/or texture coordinates [4]. Lindstrom and Turk use an image 
metric that unifies differences in geometry and surface properties, and 
take into account both scalar attributes and texture content [lo]. 

3 OVERVIEW OF ALGORITHM 
Our algorithm begins with two input meshes, the original detailed mesh 
and a simplified version of this mesh that has the desired number of 
vertices. It is unimportant what method is used to create the simplified 
mesh, and we show results from several methods later. The user picks 
the number of viewpoints to use (from six to twenty-four is typical), 
and the algorithm creates this number of rendered images of both the 
original and the simplified meshes. Then, using a method described in 
detail later, an edge in the simplified mesh is selected for improvement. 
The algorithm then attempts a number of changes to the mesh at and 
around this edge to create a mesh whose rendered images are closer to 
those of the original mesh. (A hardware-assisted method of rapidly up- 
dating the rendered images will be described later.) Possible changes to 
the mesh include moving two or more vertices, edge swapping, or even 
a vertex teleport (moving a vertex between entirely different portions 
of the mesh). Which of these changes are tried is based on how costly 
each attempt will be relative to the likely improvement each change 
will yield. When the method is done considering a particular edge, a 
new edge is selected and the process repeats. 

4 THE ENERGY FUNCTION 
In this section we lay the groundwork for using comparisons between 
images to steer the optimization of a model. Our measure of similarity 
is based on the work by Lindstrom and Turk [lo] in which an image 
metric is used to order a set of edge collapses. Their method, however, 
uses geometry-based heuristics for positioning the vertices and and a 
greedy method for choosing edge collapses that often yields a subopti- 
mal connectivity. Our optimization method, on the other hand, uses the 
image metric directly to determine the best vertex positions and what 
changes to make to the connectivity. First we describe how multiple 
images of the original and a simplified model are compared in order to 
judge the similarity of the models. Then we explain how to efficiently 
evaluate the metric during optimization. 

4.1 Comparing Models Using Images 
An image metric is a function over pairs of images that gives a non- 
negative measure of the distance between the two images. While sev- 
eral perceptually motivated image metrics exist, we will limit our dis- 
cussion to the mean-square error (MSE) metric’ because of its compu- 
tational efficiency and the convincing results it produces for our appli- 
cation. We note that our image-driven optimization framework easily 
allows other image metrics to be used, such as [ 1 1 .  141. As an example, 
we have incorporated Bolin and Meyer’s perceptual image metric [I]  
with our optimization method, but found it to give less pleasing results 
than MSE in most cases. Even though some of our examples include 
colored models, we compute a single luminance channel Y for each 
image using the standard NTSC coefficients and measure only differ- 
ences in luminance, which has worked well for all of our test models. 

We cannot hope to capture the entire appearance of an object in a 
single image. Ideally, we wish to capture the set of all radiance samples 
that emanate from the surface of an object under all possible lighting 
conditions. This is obviously not possible in practice. To capture a 
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’Although MSE does not satisfy the hiangle inequality property of a metric, 
we will use it only to determine whether one mesh is a better approximation 
than another, for which triangle inequality is irrelevant. Many geometry-based 
measures of similarity are likewise expressed as quadratic functions [6, 3.91. 

Figure I: Twelve uniformly distributed views of a model. The viewpoints correspond to 
the vertices of a regular icosahedron. 

large collection of radiance samples, we render images from a number 
of different camera positions, typically between six and twenty-four, 
around the object and apply the image metric to this entire set of images 
(Figure 1). Our measure of similarity can then be computed as follows: 
Given two sets of 1 luminance images Yo = { Y f }  and Y1 = { Y i }  of 
dimensions m x n pixels, the mean-square difference is 

While the number of views required and the “optimal” placement 
of viewpoints vary between objects, we have chosen to use a uniform 
distribution of views, which has worked well for all models that we 
have optimized so far. For each view, we place a single light source 
near the viewer to illuminate the front of the model. For the results 
presented in this paper, we used 20 images of 256 x 256 pixels each 
during optimization, and placed the model on a gray (50% intensity) 
background. 

4.2 Definition of Energy Function 
In the context of optimization, we will refer to the quality measure pre- 
sented in the previous section as the energyfinction E (cf. [6]). That 
is, E is a function of the rendered images 9 of some ideal model M 
that we wish to reproduce, and images Y of the current model M be- 
ing optimized. In order to make the optimization procedure efficient, 
we need a fast method for computing image differences. Whenever a 
new mesh is produced by making an oprirniurtion move, i.e. moving 
some of its vertices or changing its connectivity, we must conceptually 
use the image comparison procedure described above, which requires 
rendering the entire model from multiple viewpoints, capturing the im- 
ages, and applying the image metric to each image to measure the vi- 
sual quality of the mesh. In practice, however, we can accelerate this 
process by updating the images incrementally and evaluating the image 
metric over the affected pixels only, assuming the difference between 
consecutive meshes is small. In this section, we describe a fast method 
for evaluating the change in energy without having to iterate over the 
entire triple sum in Equation 1. 

The absolute energy E is useful for comparing the relative qual- 
ity of two meshes and determining when the optimization converges. 
However, we are often more interested in the change in energy A E  
incurred by an optimization move. A beneficial move results in a neg- 
ative change as a low-energy state is preferred. Thus, instead of com- 
puting absolute energies, we will focus on how to evaluate changes in 
energy efficiently. The procedure described here generalizes the com- 
putation of edge collapse energies described in [lo] to arbitrary con- 
nectivity and geometry changes. 

Let 3, Y, and Y’ be the collections of images of the target model M, 
the current model M ,  and the model M’ after performing an optimiza- 
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tion move on M ,  respectively. Then the change in energy associated 
with the move is: 

AE = E(M’) - E(M) 

Note that any pixel satisfying Yh;j = viij makes no contribution to 
AE. In fact, this holds for the majority of pixels due to the spatial lo- 
cality of the optimization moves used in our algorithm. Each optimiza- 
tion move entails replacing a small set of triangles T with T’. These 
two sets may be topologically equivalent, but their geometric extents 
may differ whenever their supporting vertices are moved. Thus, the 
only pixels that can differ between the images y and Y’ when T is 
replaced with T’ are the ones covered by T U T’. For efficiency, we 
compute for each view h an axis-aligned bounding box Rh = zh x Jh 
in screen space around these triangles, which is a conservative esti- 
mate of the af€ected pixels. By visiting this smaller set of pixels only, 
we obtain an expression for AE that is faster to evaluate: 

4.3 Fast Image Updates 
So far, we have described how to evaluate AE given sets of images 
3, Y ,  and Y’. We will now explain how to efficiently generate these 
images. Our approach is to maintain images Y of the most optimal 
model found so far and, for each optimization move considered, make 
incremental changes to these images to produce Y‘. If the move is 
beneficial, Y is replaced by y’. As pointed out in the previous section, 
only parts of Y‘ need to be generated, and we describe in this section 
data structures and algorithms for efficiently querying what portions 
of the mesh to render in order to produce the necessary subimages. 
Our approach to fast image updates has been tailored to systems with 
graphics hardware, and our implementation uses OpenGL and the pixel 
buffer extension for hardware-assisted off-screen rendering. 

The optimization algorithm begins by rendering images 3 of the 
target model and stores these away. In addition, we render images 
Y of the coarse model that is to be optimized, which are generated 
from scratch only once and are subsequently updated via small local 
changes. Since the evaluation of the energy function, and consequently 
the generation of Y’, resides in the innermost loop of the optimiza- 
tion algorithm, it is imperative that this step is efficient. In particular, 
we need a fast algorithm for replacing a small set of triangles T with 
T‘, without having to re-render the entire mesh. This is conceptually 
done by “un-rendering” the triangles T ,  revealing any obscured parts 
of the surface, and then rendering the replacement triangles T’. Un- 
fortunately, un-rendering is not commonly supported in hardware, but 
we can limit the number of triangles that have to be rendered by ex- 
ploiting spatial locality and subdividing the image space into triangle 
buckers. We maintain a pair of hash tables, indexed by the triangle 
identifiers, for each pixel row and column (Figure 2). This data struc- 
ture, explained in detail below, allows us to perform rectangular range 
queries to efficiently cull away most triangles that do not intersect the 
region Rh = zh x Jh  in each view h that contains the triangles T UT’. 
The result of the range query is a set TR,, that is guaranteed to contain 
all triangles, visible and obscured, that overlap the region. Since the 
procedure is the same for all views h, we will omit the subscript h in 
the following paragraph for the sake of readability. 

Triangle culling is accomplished by computing the union of the ver- 
tical buckets TI = U;€rT; and the horizontal buckets TJ = UjEjTj 
spanned by R, and then letting TR = TI n TJ be a conservative (but 

Figure 2: The mangle bucket data sbuchue. The hiangles of the model are projected onto 
the two image axes and are maintained in hash tables for all pixel rows and columns. This 
data structure allows for all mangles TR (shown in blue) that intersect the rectangular 
region R surrounding the triangles T U T’ to be accessed quickly. The set of uiangles 
T = rrwl1 surrounding a single vertex v is here shown in red. We f i ~ d  TR by computing 
the intersection of the hiangles Tr (magenta) and the biangles TJ (preen). 

generally tight) estimate of the set of triangles contained in R. We ac- 
celerate the computation of unions by maintaining an additional set of 
tables AT, = T; \ T;-I that are the set differences between consec- 
utive pixel columndrows). That is, AT; contains the triangles whose 
left-most vertex is in column i. Then we can rewrite TI as a union 
of disjoint sets Tmin I U ATmin I + I  U . * . U AT,,, I .  In general, the 
hash tables AT, are considerably smaller than the tables Ti. The in- 
tersection TR can then be computed in linear time by associating a 
“time stamp” with each triangle. Prior to computing TR, a unique time 
stamp is chosen. While building the set TI ,  all triangles encountered 
are marked with the new time stamp. As TJ is traversed, only the 
triangles with the given time stamp are added to TR. 

To replace T with T‘, we first clear each region Rh in which these 
sets of triangles are contained. We then render the triangles TR,, \ T ,  
i.e. all triangles in Rh except those we wish to un-render. We complete 
the operation by rendering the set T’, producing the images y’, which 
then allows us to evaluate AE. The use of these data structures to cull 
away triangles increased the overall speed of the algorithm by a factor 
of six for the bunny model in Color Plate la. For optimization with 20 
views, 75-100 evaluations of AE can be made per second. 

5 OPTIMIZATION PROCEDURE 
Mesh optimization can be described as a process of searching the space 
M of all possible meshes for the mesh that minimizes some given met- 
ric, subject to a set of constraints. In this paper, the goal of optimization 
is to produce a model with a few number of triangles that is visually 
similar to a target model with a larger number of triangles. In contrast 
to mesh simplifiaion algorithms such as [IO] and the mesh optimiza- 
tion algorithm by Hoppe et al. [6], which are also driven by this goal, 
we will assume that an already simplified mesh is provided, which is 
used as a starting point in our optimization method, and which we seek 
to improve with respect to some measure of visual similarity in rela- 
tion to the target model. The optimization is constrained by fixing the 
number of vertices in the coarse mesh, although we allow its vertices 
to move and its connectivity to change. 

The space of all meshes that we seek to explore can be parame- 
terized in terms of the mesh connectivity, geometry, and surface at- 
tributes such as colors, normals, and texture. Formally, we define a 
mesh M = (K, X, S) as a triplet consisting of a simplicial complex 
K that defines the connectivity, a set of vertex positions X that define 
the geometry, and a set of surface attributes S. We distinguish between 
the topological entity E V and the corresponding geometric realiza- 
tion 4 ( w )  = x E X c R3 of a vertex. Each attribute is bound to 
a vertex v, a triangle t ,  or a corner (v, t) formed by v and one of its 
incident triangles t. While the geometry and surface attributes consid- 
ered here are continuous parameters, the mesh connectivity is discrete. 
To optimize both, we will take an approach similar to that of Hoppe 
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Figure 3: The simplex operators LsJ and [si. 

et al. [6] by using a two-level nested optimization; an inner, continu- 
ous optimization in which vertices and surface attributes are modified 
while fixing the connectivity, and an outer, discrete optimization in 
which simple, atomic changes to the connectivity are made. Our gen- 
eral approach is to to select a set of edges in the mesh to improve as 
suggested by an oracle, interleaved with a sequence of randomly cho- 
sen edges. This oracle (described in detail later) identifies edges that 
may be the cause of large differences between the images of the orig- 
inal and current mesh. For each chosen edge, we try a sequence of 
connectivity moves of varying complexity, and optimize a small set of 
vertices in the neighborhood of the edge until the connectivity move 
results in a decrease in the energy function. 

In addition to the use of an oracle to guide the optimization, ver- 
sus random descent, our optimization method differs from Hoppe et 
al.'s [6] in several ways. First, we do not use optimization to simplify 
a mesh-we use it to improve a low vertex count mesh that was pro- 
duced by any mesh simplification method. Second, our optimization 
is not guided by a geometric measure of distances, but rather by im- 
age differences. By using an image metric to guide optimization we 
can capture all of the relevant factors that make up the appearance of 
a mesh without explicitly creating an energy term for each one, We 
thus avoid the tricky issue of how to balance such factors as geometric 
distance, color, and texture against one another. Third, the method we 
use to optimize vertex positions is entirely different from the conju- 
gate gradient approach used by Hoppe et al. Finally, our selection of 
which operation to perform upon an edge is not random, but is decided 
based on which operation would result in a non-negligible improve- 
ment to the mesh. Although our work owes a debt to Hoppe et al.'s 
pioneering technique, we claim that our method is as different from 
their approach as most of the dozens of published mesh simplification 
methods are from one another. 

In the remainder of this section, we will first describe the low level 
details of the continuous and discrete optimization, and then conclude 
by discussing the strategy for choosing connectivity moves and the set 
of edges to optimize. In describing the algorithm, we will make fre- 
quent use of the two simplex operators 1.1 (the n - 1-simplices that 
make up an n-simplex s) and 1.1 (the n + 1-simplices that s is a subset 
of) [9]. Figure 3 illustrates these simplex operators. 

5.1 Continuous Optimization of Mesh Geometry 
In this section we will explain how to optimize the geometry of a small 
portion of a mesh. The goal of this optimization is to improve the visual 
appearance of the mesh by making a series of small adjustments to the 
vertex positions, such as lengthening a protrusion, smoothing out un- 
desired wrinkles and bumps on the mesh, enhancing creases and other 
fine details, etc. Specifically, given a mesh with a fixed connectivity 
and a subset V of its vertices, we wish to move the vertex positions 
X = d(V) simultaneously until a local optimum in the visual qual- 
ity of the mesh is found. We can easily generalize this procedure to 
include (continuous) surface attributes, in which case we simply con- 
catenate vertex positions and attributes to form a single higher dimen- 

sional parameter vector. For simplicity, however, we will restrict our 
discussion to vertex positions only. 

Multidimensional methods for continuous optimization problems 
fall into one of two categories: methods that make use of derivative in- 
formation of the objective function in order to make an educated guess 
about where, or at least in what direction, the minimum lies, and slower 
methods that rely on function evaluations only. Unlike in [6] ,  where the 
energy function is a closed form quadratic expression, our energy func- 
tion is given by discrete image differences that depend non-trivially 
(although generally smoothly) on the input parameters (the vertex po- 
sitions and attributes). Therefore, we use an optimization procedure 
that relies only on sampling the energy function itself. We have cho- 
sen to use the downhill simplex method for this task because it is easy 
to implement and generally requires only a small number of function 
evaluations before converging on a minimum [13]. This method takes 
as input n + 1 vectors that specify the vertices of an n-simplex, evalu- 
ates the function at these vertices, and proceeds by making a sequence 
of moves, such as reflections, contractions, and expansions, which are 
chosen based on the current function values at the vertices of the sim- 
plex. The energy function is then evaluated whenever a vertex in the 
simplex is moved. Near a local minimum, the simplex contracts until 
the function values become sufficiently close. Thus, by tracking the 
hyper-volume of the simplex, which always expands or contracts by a 
power of two, we can estimate when a minimum has been found.. 

To apply the downhill simplex method to our problem, we begin 
by constructing a basis for the set of m mesh vertices V that we 
wish to optimize, with positions X = { x i } z l .  Even though the 
vertices need not be related geometrically or topologically whatso- 
ever, we will assume that they are confined to a small neighborhood 
in the mesh. For example, if m = 4 (a number of vertices fre- 
quently optimized at a time in our algorithm), then we need to produce 
n = 3m = 12 linearly independent 12-dimensional vectors (the wz- 
coordinates for the four vertices). In addition to the vertex positions 
X in M-the current mesh-which collectively make up an n-vector 
p;f = (xT xT . . . x'f,) for one of the vertices in the initial sim- 
plex, we can compute the remaining n vertices of the simplex 
by choosing the unit coordinate axes in R" as a basis, and displacing 
these vertices a small distance 6 from PO along each corresponding ba- 
sis vector, i.e. p, = po + d&;, 1 5 i 5 n. Each such p i  naturally 
constitutes an initial estimate of the location of the optimal X, and it is 
important that these estimates are reasonably close to the expected min- 
imum for fast convergence. Consequently, we choose the magnitudes 
of the displacements based on the local geometry around the vertex set 
V. One might suspect that using local coordinate frames derived from 
the geometry of the mesh (as opposed to using the arbitrary canonical 
basis in R") would produce better and less biased offsets. However, 
we have not found this to be true in practice. 

Once the initial simplex has been formed, the continuous optimiza- 
tion of X is performed by making repeated evaluations of the energy 
function, until the process converges or a predefined limit on the num- 
ber of evaluations is exceeded. We are currently imposing a limit of 
32n evaluations to avoid spending too much effort on one small region 
of the mesh. 

So far we have not discussed how to choose the set of vertices V 
to optimize as this decision is tightly linked to the outer, discrete opti- 
mization, which we will discuss in the following subsection. 

5.2 Discrete Optimization of Mesh Connectivity 
Most simplified meshes can be improved greatly by optimizing the po- 
sitions of their vertices alone. After a while, however, a point of di- 
minishing returns will be reached as changes to the connectivity are 
needed to further improve the mesh. This is generally required for one 
of two reasons: either the local mesh connectivity is not appropriate 
for its given geometry, which can be handed by making one or more 
edge swaps; or the mesh tessellation is too fine or too coarse in relation 
to the geometric complexity, which we address by transferring vertices 
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Figure 4: The edge swap, split, and collapse operations. 

from one area to another using a vertex telepoR operation. These two 
connectivity moves are described in the remainder of this section. 

To explore the entire space of all meshes, we need a way of gen- 
erating all possible mesh connectivities K for a given set of vertices 
V. While the number of meshes with a fixed number of vertices is 
finite, the vast majority of these meshes are not useful to us. Rather 
than generating the complexes from scratch, this type of combinatorial 
optimization is often done by making incremental changes to a good 
initial estimate of the optimal connectivity. For manifold meshes of 
fixed topological type, it can be shown that the edge swap operator 
(Figure 4) is sufficient to produce any desired (manifold) connectivity. 
While this operation is useful for making k ~ ~ a l  changes to the connec- 
tivity, it is not practical for distributing vertices over the mesh, as a 
long chain of edge swaps in conjunction with geometry optimization 
might be required to transfer a single vertex from one area to another. 
Instead, we transfer vertices using a more global and atomic operation. 
In essence, we need two atomic operations; one for vertex removal, 
and one for adding a vertex to the mesh. To remove a single vertex, 
we use edge collapse, while edge split is used to introduce a vertex 
(Figure 4). These two operations, when used together, make up the 
vertex telepoR operation. We chose edge split instead of vertex splii- 
the dual of edge collapse-for two reasons: The edge split results both 
in a uniquely defined connectivity and a unique position for the new 
vertex (assuming the edge is split at its midpoint), whereas vertex split 
requires not only the specification of which edges to “pull apart”, but 
also how to assign coordinates and surface attributes to the new vertex. 
Secondly, by using edge split we can treat the discrete optimization as 
a sequence of improvements made to the edges of the mesh via a small 
set of well-defined, atomic operations. 

Recall that the discrete optimization is wrapped around an inner 
continuous optimization. Whenever a connectivity move is made, we 
optimize the geometry of the nearby vertices and accept the move if 
it leads to a decrease in the energy function. We will discuss how to 
choose what moves to make on what edges in the following sections, 
and focus the remainder of this section on providing the final details of 
how to perform each move. 

Since the initial connectivity might be far from optimal, we would 
like to avoid expending too much effort optimizing the geometry dur- 
ing the early stages. Instead, we define for each connectivity move 
multiple levels of geometry optimization, ranging from simple vertex 
placement heuristics to optimizing successively larger sets of vertices 
simultaneously. The idea is to allow an efficient but less accurate op- 
timization strategy as long as the mesh quality can be improved, and 
to employ higher degrees of optimization to fine-tune the mesh near 
an optimum. Since the expected number of function evaluations is 
roughly linear in the number of vertices to be optimized, we favor opti- 
mizing small sets of vertices, and expand the sets whenever insufficient 
progress is made. Table 1 contains the vertex set optimized for each 
connectivity move. In addition to the edge swap, split, and collapse 
operations, we include a “no-op” move which corresponds to optimiz- 

connectivity 
move 

no-op 
swap 
split 
collapse 

optimiuuion level 
0 1  2 3 

LeJ LireiJJ ITleJlJ 
le’] L L reti J 1 I le’J1 J 

v i r v i i  v u  LrleJlJ 
v v v U LLreljJ \ LeJ v 

where AEtotol is the total change in energy accumulated from previ- 
ous operations, which is reset to zero each time an edge is optimized. 

%e time is measured in number of function evaluations instead of seconds 
to ensure that the optimization is deterministic and reproducible. 
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This term is included to avoid attempting a new, possibly expensive 
move when significant progress has already been made optimizing the 
current edge. 

By using a probabilistic algorithm to determine if a move should 
be performed, several moves per edge may be attempted in addition to 
0‘. We use a predetermined order of operations, and begin each at 
the lowest optimization level. The most simple move-the no-op-is 
attempted first. For each of its three optimization levels, we evaluate 
Inequality 3, and attempt the corresponding operation if the condition 
is satisfied. If insufficient progress is made (or if none of these oper- 
ations is efficient enough to attempt), we conclude that the geometry 
is locally optimal for the given connectivity, but allow for the possibil- 
ity that the connectivity is not optimal with respect to the geometry of 
the target model. Consequently, we attempt the next cheaper move; the 
edge swap. Note that this move is only defined if e is manifold and does 
not form a surface attribute boundary. If the edge swap optimization 
does not significantly reduce the energy either, we investigate whether 
the surface is locally undersampled by attempting a vertex teleport. 

The vertex teleport operation begins by splitting e via insertion of a 
vertex v at its midpoint. In order for the edge split to be accepted, it 
must lower the energy enough to offset the expected increase in energy 
associated with the “cheapest” edge collapse. While the exact value 
for the lowest collapse energy is not always known ahead of time, we 
estimate it using the lowest energy known when the previous edge col- 
lapse was completed, and attenuate this energy over time to ensure that 
one bad estimate does not entirely inhibit future teleport attempts. If 
the edge split does not meet this energy constraint, we undo it and 
proceed with the next optimization level. Otherwise, we must find an 
edge to collapse commensurate with the decrease in energy provided 
by splitting e. 

Similar to several simplification algorithms, we maintain a priority 
queue of edges, sorted by estimates of the edge collapse energies. As 
with other operations, we associate an optimization level 1 with each 
estimate. Initially, each collapse candidate is set to a default state of 
zero energy and an optimization level of negative one. After a set of 
vertices V is optimized, we reset the state of the edges 1 [ [ V i  1 J to the 
default state and thus indirectly request that their energy estimates be 
updated since they are likely to have changed. When an edge collapse 
is requested, we dequeue the lowest energy edge. If its estimated en- 
ergy is lower than the threshold given by the previous edge split, we 
verify the estimate by collapsing and optimizing the edge at its given 
optimization level. If, on the other hand, the threshold is exceeded, the 
optimization level is incremented and a (hopefully) lower collapse en- 
ergy is obtained. If the edge collapse is still not acceptable, the edge is 
either reinserted into the queue, if the optimization level is lower than 
the maximum, or is placed in a temporary list as its energy cannot be 
lowered, allowing other edge collapses to be considered, and we repeat 
the procedure. 

In each iteration of this search for a valid edge collapse, we dequeue 
the edge with lowest collapse energy and whose optimization level has 
not reached the maximum. Due to this search order, from lowest to 
highest collapse energy, the likelyhood of finding a valid edge collapse 
decreases rapidly over time, and we terminate the search if the proba- 
bility of success is lower than 0.34, i.e. using a 3a confidence interval. 
This often preempts a futile search after a few seconds, which might 
otherwise take a long time to complete. 

If an edge is found whose collapse energy is lower than the thresh- 
old, the teleport operation completes successfully. Otherwise, we con- 
clude that there is no edge collapse compatible with the previous edge 
split. Instead of undoing the split, however, we simply proceed by col- 
lapsing the cheapest edge. While this will result in an energy increase, 
it is a rare occurrence, but not necessarily a bad one as it allows for 
occasional uphill moves that may get us out of local minima. We also 
note that since the edges created in the previous edge split are candi- 
dates for collapse, we should always in theory be able to collapse one 
of these edges to revert back to the mesh as it was before the edge split. 

5.4 Choosing Edges to Optimize 
The outermost loop in our optimization method consists of choosing a 
set of edges to optimize. Quite naturally, some edges are better candi- 
dates than others, yet it is not immediately obvious how to rank them 
to maximize the reduction in the energy function. We can, however, 
order the edges by their porential for improvement by making use of 
difference images. That is, for a given choice of image metric and as- 
sociated difference images, our oracle determines which areas of the 
mesh are high in energy, and which have a potential for large improve- 
ment. We have found this oracle to be useful for detecting artifacts 
in the mesh that can quickly be improved, which is an advantage over 
methods like [6] that rely solely on random descent. 

Periodically, we compute for each edge its potential energy by pro- 
jecting its vertices onto the screen and summing up the pixel differ- 
ences from blurred versions of the difference images, similar to [18]. 
The edges are then sorted by their potential energy, and the oracle rec- 
ommends a small set of the highest energy edges for optimization. The 
difference images are also used to measure the overall mesh energy, 
which is useful for monitoring the progress of the optimization. The 
user can then terminate the optimization when a satisfactory energy 
level has been reached. 

As alluded to above, the oracle does not always produce edges that 
can be improved greatly. and sometimes outputs roughly the same set 
of edges twice in a row. For this reason we interleave the set of edges 
suggested by the oracle with a batch of randomly chosen edges. At the 
beginning of each iteration, in which we optimize a total of 64 edges, 
we balance these two sets based on the amount of progress made in the 
previous iteration. The resulting optimization procedure is very flexi- 
ble and adjusts quickly to changes in the mesh that are either beneficial 
or detrimental. 

6 RESULTS 
The models discussed in this section were optimized on a 250 MHz 
RlOOOO Silicon Graphics Octane with IMPACTSR graphics and 256 
MB of RAM. We include examples of models that were optimized be- 
tween a few minutes and up to six hours. 

Our first example of mesh optimization is for a bunny model that 
has been simplified using a variant of Rossignac and Borrel’s vertex 
clustering method [16], for which we have removed all double-sided 
faces, thus creating a few holes in the mesh. Color Plate la  shows the 
cluster-simplified model, and Plates Ib through l e  show successively 
improved models using the image-guided optimization. In addition to 
smoothing out the rough surface, the optimization is able to close holes 
in the mesh through properly chosen edge collapses. The percentages 
in the captions correspond to the mesh energies relative to the model 
in la. 

Our mesh optimization method is also able to improve upon high- 
quality geometric simplification results. Plates If and li show two 
models that have been produces by memoryless simplification [9]. 
Plates lg  and lj show the results after optimization. Notice that the 
shapes of the ears are better captured by the optimized meshes. Plate lh  
shows the original bunny model for comparison. Figure 5 shows the 
mesh energy as a function of time for the models in Plates le, li, and 
lj, while Figure 6 shows the (final) mesh energies for several levels- 
of-detail of the bunny. These energies were computed using 24 views 
that were all different from the ones used during optimization. No- 
tice that our optimization method always outperforms Lindstrom and 
Turk’s image-driven simplification method [lo] using this quality mea- 
sure, regardless of which model is used as input to the optimization. In 
fact, we have found that using the memoryless method followed by 
optimization takes less time than using image-driven simplification to 
reach the same energy level. However, the best meshes are obtained 
when the two image-driven methods are used together. 

Plate 2b is a textured frog model. This model is actually composed 
of several connected components, with different components for the 
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Figure 5: Mesh eoergy as a function of time for various bunny models. Each curve cor- 
responds to a different initial model, produced by the image-driven (101 (693 ve&e5), 
memayless 191 (686 vertices), and venex clustering [ 161 (769 vertices) simplification al- 
gorithms. The energy is measured relative to the model produced by the image-driven 
simplitication method. and starts at 380% for venex clustering. 
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Figure 6: Mesh energy for bunny models at different levels of detail. The lower two curves 
correspood to the finaI, optimized models, whereas the upper curves correspond to the 
models before optimization. 

body, the legs and the eyes. Such "stuck together" models are com- 
monly used in video games and in feature film special effects. Plate 2a 
is a simplified frog model by the memoryless approach, and two prob- 
lems are evident. The eyeball is sticking through a part of the head and 
shows up as a white blotch. There is also cracking evident between the 
legs and the body because these components were never joined in the 
first place, and edge collapses around the places where they interpen- 
etrate have caused a mismatch between components. Simplification 
methods are not often used on such models because none of the geo- 
metric quality measures recognize these problems. Our image metric 
recognizes these problems, and Plate 2c shows the result of optimizing 
the vertex and texture coordinates of the model from Plate 2a. Opti- 
mization has fixed the cracks and the eyehead interpenetration prob- 
lem. 

Color Plates 3a-c show a memoryless simplification, the original, 
and an optimized version of a textured torus. Notice that the large black 
zeros are better placed after optimization, and that the long curved lines 
are better matched. Insets in Plates 3a and 3c show the image differ- 
ence between the coarse meshes and the original model of Plate 3b. 

Our final example is a Gouraud shaded dragon (Plate 4b). We im- 
proved a memoryless simplified version (4a) by optimizing both ge- 
ometry and vertex normals (4c). By not constraining the normals to 
unit length, the algorithm was sometimes able to artificially darken or 
brighten regions without changing the surface normal direction. As a 
result, details near the head, legs, and chest have been recovered in the 
optimized model. 

7 CONCLUSIONS AND FUTURE WORK 
We have presented a method of improving the appearance of an 
already-simplified model using optimization that is guided by images. 
This is the first mesh optimization method that takes into account not 
just the geometry of a model but also properties such as textures and 
surface normals. This approach fixes problems in a simplified mesh 
that simplification methods are insensitive to such as cracks between 
surface parts and object interpenetration. 

One avenue for future work is to explore the use of more 
perceptually-based image metrics. A more unusual possibility is to 
try optimizing a mesh that looks nothing like the target mesh. The two 
meshes might be a horse and a tiger, and the result of the optimization 
would then produce a morph between these two dissimilar shapes. Suc- 
cess on this problem would probably require more global mesh moves 
than those we have used to date. Other intriguing potential applications 
of our method include remeshing, geometry compression, and design 
and parameterization of bump or displacement maps. 
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